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Abstract. We get back to the computation of the leading finite size corrections to some random link
matching problems, first adressed by Mézard and Parisi [J. Phys. France 48, 1451 (1987)]. In the so-
called bipartite case, their result is in contradiction with subsequent works. We show that they made some
mistakes, and correcting them, we get the expected result. In the non bipartite case, we agree with their
result but push the analytical treatment further.

PACS. 75.10.Nr Spin-glass and other random models – 02.60.Pn Numerical optimization

1 Introduction

The possibility of investigating some optimization prob-
lems using techniques of the field of disordered systems
in statistical physics has been recognized for a long time
(see [1] for a recent review). Along with the traveling
salesman problem and, more recently, K-Sat, one of the
problems which got most of the attention is the matching
problem, of which two variants have been studied:

(a) The simple matching problem: consider 2N points and
a set of ‘distances’ between them lij = lji. A match-
ing of these points is a set of N pairs so that each
point belong to exactly one pair. The ‘length’ of such
a matching is

Lmatching =
∑

pair∈matching

lpair. (1)

One focuses on the properties of the matching of min-
imal length.

(b) The bipartite matching problem (or assignment prob-
lem), which is as above, except that we split the points
into two sub-sets A and B of N points each, and al-
low only matchings where each pair is made of a point
from A and a point from B.

Here we are interested in the case where the lij , i < j,
are independent identically distributed random variables,
either uniformly distributed on the interval [0, 1] (so-called
flat case) or distributed with the law exp(−l) on [0, +∞[
(so-called exponential case).

Both the simple and bipartite cases have been inves-
tigated in the thermodynamical limit N → +∞, where
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self-averaging of the optimal length occurs. The replica
method, in the replica symmetric scheme, yielded predic-
tions for the mean optimal length and the distribution
of the lengths of occupied links in the optimal configu-
ration [2]. This was shown to be equivalent to a cavity
approach [3]. Numerical works checked the validity of the
results obtained with these techniques [4,5], and got inter-
ested in another quantity, the probability for some given
point to be connected to its kth nearest neighbor in the
optimal matching. This was also dealt with by an analyt-
ical cavity computation [6]. Remarkably [7] confirmed all
the above results by rigorous proof.

The stability of the replica symmetric solution was
checked in [8], yielding as a byproduct the O(1/N) cor-
rection to the mean length of the minimal matching. For
the assignment problem with flat distances, they found

L
flat

min =
π2

6
− 1

N

(
π2

12
+ 2ζ(3)

)
+ o

(
1
N

)
, (2)

where · · · means the average with respect to the distribu-
tion of the distances.

This seemed to agree with the numerical simulations
at the time [4]. But [9] came up with a conjecture for the
assignment problem at any finite N : in the exponential
case the mean length of the optimal matching would be

L
exp

min|N =
N∑

k=1

1
k2

, (3)

which implies

L
exp

min =
π2

6
− 1

N
+ o

(
1
N

)
· (4)
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The problem is that in the framework of [8] it is not
difficult to prove – as we shall – that

L
exp

min − L
flat

min =
2ζ(3)

N
, (5)

so that (4) is not compatible with (2). Beside, other results
sustain (4): more recent numerical simulations [10], and an
allegedly rigorous proof of (3) [11].

The main purpose of this article is to show that Mézard
and Parisi [8] actually made some mistakes in the compu-
tation leading to (2). Correcting them, one does get

L
flat

min =
π2

6
− 1

N
(1 + 2ζ(3)) + o

(
1
N

)
, (6)

which, using (5), coincides with (4).
Apart from some trivial errors due to a confusion about

the number of points, N or 2N , that has already been
pointed out [4], and some typos, there are essentially two
mistakes in [8]:

(i) they forgot a contribution to the O(1/N) term of
Lmin, but this is without any consequence as this
term turns out to vanish in the zero temperature limit
(Appendix A.1);

(ii) they made a mistake in the computation of another
contribution (Appendix B.3), and this was responsible
for the wrong result (2).

As the computations carried out in [8] are quite in-
volved, we have chosen to make this article the most self-
contained possible by restating all the necessary steps.

In Section 2, we tackle the simple matching problem,
which is formally simpler but very similar to the assign-
ment problem. Error (i) is common to both problems, and
we deal with it in that section. Moreover we refine the com-
putation of the O(1/N) correction which in [8] relies on a
rough numerical procedure. We give an analytical expres-
sion of the correction as the sum of a series. Unfortunately
we were not able to sum this series, but it might not be
impossible.

In Section 3, we turn to the assignment problem. There
we correct error (ii), which is specific to this variant.

2 The non bipartite case

In this section, for the sake of simplicity, we exclusively
consider the flat case.

To tackle the problem with the tools of statistical me-
chanics, one introduces an inverse temperature β (to be
sent to +∞ in the end) and a partition function

Z =
∑

all possible matchings

exp(−NβLmatching). (7)

The scaling factor N ensures a good thermodynamic
limit at fixed β [12].

We will not get into the details of the computation of
the averaged replicated partition function, because it is

quite similar to the bipartite case, for which the deriva-
tion can be found in Appendix B.1. Let us just state the
result [8]:

Zn =
∫ ∏

α

dQα√
2πgα/N

exp
(
−N

2
S[Q]

)

× exp

(
−1

4

′∑
α,γ

gαgγ

g2
α∪γ

Q2
α∪γ

)
, (8)

where gp = 1/(βp) and

S[Q] =
∑

α

Q2
α

gα
− 4 ln z[Q],

z[Q] =

(
n∏

a=1

∫ 2π

0

dλa

2π
eiλa

)
exp

(∑
α

Qαe−i
�

a∈α λa

)
. (9)

In the above expressions, α stands for any non empty
subset of {1, . . . n} so that the number of Qα variables is
2n − 1. For such an α, we call p(α) its cardinal number,
and use the shorthand notation gα for gp(α). The notation∑′

α,γ means that the summation runs over all the couples
(α, γ) such that α ∩ γ = ∅.

Lmin is nothing but the intensive free energy F/N =
−1/(βN) lnZ in the limit β → +∞. It is evaluated by a
saddle-point method. The saddle-point equations read

Qα

gα
= 2

∂ ln z

∂Qα
· (10)

It has been solved in the limit n → 0 under the assumption
of replica symmetry [2]: Qsp

α = Qsp
p(α). It turns out that

the order parameters Qsp
p are not well defined quantities

at low temperature, and one can bypass this difficulty by
considering the well defined generating function

G(l) =
+∞∑
p=1

(−1)p−1

p!
Qsp

p epl, (11)

for which (10) translates into

G(l) = − 2
β

∫ +∞

−∞
dyK(l + y)e−G(y), (12)

where

K(u) =
+∞∑
p=1

(−1)p

(p!)2
epu = −1 + J0(2eu/2). (13)

In (13) J0 is the Bessel function of order zero. Note that
(12) can be obtained by direct probabilistic arguments
using the cavity method [3].

The free energy in the thermodynamical limit has been
computed in [2]:

F

N
= lim

n→0
β→+∞

1
2βn

S[Qsp] =
π2

12
· (14)
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The first finite size correction ∆F is the sum of two
terms: the first one, corresponding to the last factor in (8),

∆F 1 =
1

4Nnβ

′∑
α,γ

gαgγ

(
Qsp

α∪γ

gα∪γ

)2

= −ζ(3)
2N

(15)

has been computed in the appendix of [8]. The second
one corresponds to the Gaussian fluctuations around the
saddle-point:

∆F 2 =
1

2βNn
ln det

[
1
2
√

gα
√

gγ
∂2S

∂QαQγ

]

=
1

2βNn
ln detT +

αγ , (16)

where we define the matrices T ε
αγ , ε = ±1, as follows:

T ε
αγ = δαγ + ε

Qsp
α Qsp

γ

2√gαgγ
− εδα∩γ=∅

Qsp
α∪γ

gα∪γ

√
gαgγ . (17)

At this stage the introduction of ε is a useless com-
plication, since for the non bipartite case we only have to
consider the case ε = +1. However the case ε = −1 will
turn out to be useful in Section 3, where we deal with the
bipartite case.

The computation of ∆F 2 involves finding the eigenval-
ues of (T ε

αγ). A vector (Qα) is eigenvector for the eigen-
value λ if

∀α, Qα + ε
∑

γ

Qγ

Qsp
α Qsp

γ

2√gαgγ

− ε
∑

γ/α∩γ=∅
Qγ

Qsp
α∪γ

gα∪γ

√
gαgγ = λQα. (18)

The diagonalization process adopted by [8] follows the
de Almeida-Thouless strategy [13] of considering stable
subspaces of increasing dimension. First we look for eigen-
vectors where no particular replica is distinguished:

Qα = cp(α). (19)

When we plug this into (18), we see that we have to
diagonalize a n × n matrix N0,ε(n)

N0,ε(n)pq = δpq − εCq
n−p

Qsp
p+q

gp+q

√
gpgq

+ε
Qsp

p Qsp
q

2√gpgq
Cq

n p, q = 1, . . . n, (20)

where we use the notation Cp
n = n!

p!(n−p)! . This ma-
trix turns into an infinite dimensional matrix N0,ε when
n → 0:

N0,ε
pq = δpq − ε(−1)q (p + q − 1)!

(p − 1)!q!
Qsp

p+q

gp+q

√
gpgq

p, q = 1, . . . + ∞ (21)

(the last term in (20) does not contribute).
The eigenvalues of N0,ε have multiplicity 1 in the spec-

trum of T ε
αγ .

Then we look for eigenvectors of T ε
αγ where one replica

is distinguished, say a:

Qα =
{

dp(α) if a ∈ α
ep(α) if not .

The orthogonality constraint between this family and
the previous one (19) reads pdp +(n−p)ep = 0. So we can
choose the only dp as variables (of which dn = 0), and we
end up with the diagonalization of an (n − 1) × (n − 1)
matrix N1,ε(n)

N1,ε(n)pq = δpq − εCq
n−p

Qsp
p+q

gp+q

√
gpgq

q

q − n

+εCq
n−1

Qsp
p Qsp

q

2√gpgq

q

q − n
+ εCq−1

n−1

Qsp
p Qsp

q

2√gpgq

p, q = 1, . . . n − 1. (22)

We get n − 1 eigenvalues λ1, . . . λn−1 (independent
on a) and the corresponding eigenvectors ua

1 , . . . u
a
n−1. The

important point is that the ua
i , a = 1, . . . n are not linearly

independent:
∑

a ua
i is a vector of the previous family and

orthogonal to it, so it has to be 0. Eventually the eigen-
values of N1,ε(n) have multiplicity n − 1 in the spectrum
of T ε

αγ . When n → 0, N1,ε(n) becomes an infinite dimen-
sional matrix which happens to be exactly N0,ε.

More generally, one finds the whole spectrum of T ε
αγ by

looking for eigenvectors which have k given distinguished
replicas:

Qα =
{

0 if pα < k
di

p(α) if α contains k + 1 − i of the distinguished replicas,

where i goes from one to k+1. The orthogonalization with
respect to a family where only k − 1 of these replicas are
distinguished reads as a system of equations

∀j = 0, 1, . . . k − 1,

k−j∑
r=0

Cr
k−jC

p−(r+j)
n−k dk+1−(r+j)

p = 0,

(23)

whose solution in the n → 0 limit is

d1
p

p(p+1) . . . (p+k−1)
=

d2
p

(p−k+1)(p+1) . . . (p+k−1)

=
d3

p

(p−k+1)(p−k+2)(p+2) . . . (p+k−1)

= . . . =
dk+1

p

(p−k+1) . . . p
(24)

(note that this is slightly different from equation (20) in [8]
where there is a typo)

It follows that we can keep the only d1
p as independent

variables, and have to diagonalize a matrix Nk,ε(n), which
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in the limit n → 0 is the infinite dimensional matrix

Nk,ε
pq = δp,q−ε(−1)q (p+q−1)!(q−1)!

(p−1)!(q−k)!(q+k−1)!
Qsp

p+q

gp+q

√
gpgq

p, q = 1, . . . + ∞. (25)

The eigenvalues of Nk,ε(n) have multiplicity Ck
n−Ck−1

n

in the spectrum of T ε
αγ .

The article [8] prefers using matrices derived from
the Nk,ε by some transformations which do not af-
fect the spectrum: after shifting the indices p and
q by k, then transposing and multiplying each entry
by (−1)p+q

√
gq+k

gp+k

(q+1)...(q+k−1)
(p+1)...(p+k−1) , one gets the family of

matrices

Mk,ε
p,q = δp,q − ε(−1)q+k (p + q + 2k − 1)!

(p + 2k − 1)!q!
gq+k

Qsp
p+q+2k

gp+q+2k
,

(26)

where p, q = 0, 1, . . . + ∞.
We can now proceed to the computation of ∆F 2 (16):

∆F 2 = ∆F 2,+
1 + ∆F 2,+

2 , (27)

where

∆F 2,ε
1 = lim

n→0

1
2βnN

[
ln detN0,ε(n)+(n−1)ln detN1,ε(n)

]
,

∆F 2,ε
2 = lim

n→0

1
2βnN

∑
k≥2

(
Ck

n − Ck−1
n

)
ln detNk,ε(n). (28)

For k ≥ 2 one has
(
Ck

n − Ck−1
n

) ∼ n(−1)k−1 2k−1
k(k−1) so

that

∆F 2,ε
2 =

1
2βN

+∞∑
k=2

(−1)k−1 2k − 1
k(k − 1)

ln detMk,ε. (29)

There is a subtlety in the computation of ∆F 2,+
1 : as the

limits of N0,+(n) and N1,+(n) when n → 0 are the same,
one may be tempted to say that in this limit we have
a unique family of eigenvalues of multiplicity n, and so
∆F 2,+

1 = 1/(2βN) ln detM1,+. It is what [8] did, but it is
wrong. Actually there is a factor 1/n to take into account,
so that one also gets the contribution of the derivatives

∆F 2,+
1 =

1
2βN

[{
d ln det N0,+(n)

dn

−d lndetN1,+(n)
dn

}
n=0

+ ln detM1,+

]
. (30)

It turns out that the extra term is zero when β →
+∞, but it is not trivial (see Appendix A.1). We also
show en passant in this appendix that det M1,+ has a non
zero finite limit when β → +∞ (1 actually) so that we
eventually agree with [8] on the fact that

∆F 2,+
1 = 0. (31)

As far as the computation of ∆F 2
2 (29) is concerned,

the strategy of [8] consists into translating the infinite di-
mensional matrices Mk,ε into more tractable integral op-
erators. If (cp) is an eigenvector of Mk,ε, then

f(x) =
+∞∑
q=0

(−1)q

q!
√

gq+kcqe(k+q)x−G(x)/2 (32)

is an eigenfunction, with the same eigenvalue, of the
operator

Mk,ε(x, y) = δ(x − y) − ε(−1)kAk(x, y), (33)

where

Ak(x, y) =

2 exp
(
−G(x) + G(y)

2
+ k(x + y)

)+∞∑
p=0

(−1)pep(x+y)

p!(2k + p − 1)!
gp+k

(34)

and reciprocally.
The article [8], on the basis of numerical discretization

and diagonalization of these operators, argues that the
values of detMk,ε(T ) plotted versus T ln k fall onto two
universal curves, depending on the parity of k:

det Mk,ε(T ) =
{

fε(T ln k) if k is even
f−ε(T ln k) if k is odd . (35)

A more accurate numerical analysis showed us that
this happens only when k → +∞, T ln k being kept fixed:
f+ and f− are limit functions (see Fig. 1). Happily this
does not change the conclusion that, in the limit β → +∞,

∆F 2,ε
2 = − 1

2N

∫ +∞

0

dt[ln fε(t) − ln f−ε(t)]. (36)

In [8], this integral is performed by fitting the numeri-
cal curves of f+ and f− by smooth functions, which yields
an estimate flawed by a rather rough uncertainty:

∆F 2,+
2 =

1
N

(0.47 ± 0.05). (37)

As a consequence, ∆F itself is known with a bad
precision:

∆F =
1
N

(−0.13 ±−0.05). (38)

It is possible to improve on this. One can explicitly
compute the limit of the operator Ak(x, y) when k → ∞
under the restriction that t = T ln k remains fixed. In this
case one also has β → +∞. Let us recall that in this
limit [2]

G(l) = Ĝ(βl) where Ĝ(x) = ln(1 + e2x). (39)

So we can write

Ak(x, y) ∼ 2
β
√

(1 + exp(2x/β))(1 + exp(2y/β))
×f(k, exp(x + y)), (40)
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Fig. 1. The values of det Mk,ε(T ) defined in (26) plotted
versus T ln k. Above, det Mk,− k odd and det Mk,+ k even.
Below, det Mk,− k even and detMk,+ k odd.

where

f(k, z) = zk
+∞∑
p=0

(−1)pzp

p!(2k + p − 1)!
1

p + k
· (41)

The eigenvalues of Ak(x, y) are the same as the ones
of the operator

ln k

t
Ak

(
ln k

t
u,

ln k

t
v

)
=

2√
(1 + exp(2u))(1 + exp(2v))

× f

(
k, exp

(
ln k

t
(u + v)

))
. (42)

Let us define

g(k, w) = f(k, exp(w ln k)). (43)

In Appendix A.2 we show that when k → +∞,
g(k, w) → Θ(w − 2) where Θ is the usual Heaviside step
function. So the operator we have to diagonalize is

2√
(1 + exp(2u))(1 + exp(2v))

Θ

(
u + v

t
− 2
)

. (44)

It is the same as diagonalizing

Ht(u, v) =
2√

(1 + exp(2(u + t)))(1 + exp(2(v + t)))
Θ(u + v). (45)

We have f+(t) = ln det(I −Ht) and f−(t) = ln det(I +
Ht). The correction (36) reads

∆F 2,+
2 =

1
2N

∫ +∞

0

dt [ln(det(I + Ht)) − ln(det(I − Ht))]

(46)

=
1
N

+∞∑
p=0

I2p+1

2p + 1
(47)

where

Ip =
∫ +∞

0

dt TrHp
t =
∫ +∞

0

dt

×
∫

du1 . . .dupHt(u1, u2) . . . Ht(up−1, up)Ht(up, u1)

= 2p

∫ +∞

0

dt

∫
du1 . . . dup

× Θ(u1+u2) . . . Θ(up−1+up)Θ(up+u1)
(1+ exp(2(t+u1))) . . . (1+ exp(2(t+up)))

(48)

(to derive (46) we used the identity ln det = Tr ln and
expanded ln(det(I ± Ht)) in power series of Ht).

Note that the operators Ht have positive and negative
eigenvalues. The changes of variables xi = exp(−2ui) and
C = exp(2t) yield

Ip=
∫ +∞

0

dt T rHp
t =
∫ +∞

1

dC

2C

∫
dx1

x1 + C
· · · dxp

xp+C
, (49)

where the integration with respect to x1, . . . xp is to be
performed over the domain defined by ∀i, xi ≥ 0 and
xixi+1 ≤ 1, xpx1 ≤ 1.

Unfortunately we were not able to compute analyti-
cally Ip for a generic p. We succeeded in computing ex-
actly the four first terms, and we got an estimate of the
fifth one by numerical integration:

I1 =
ζ(2)
4

∼ 0.411234,

I2 =
ζ(3)
2

∼ 0.601028,

I3 =
3ζ(4)
16

∼ 0.202936,

I4 = 4ζ(5) − π2ζ(3)
3

∼ 0.193102,

I5 ∼ 0.137098. (50)

A truncated summation of (46) up to the third term
gives the following lower bound

∆F 2,+
2 > 0.506298/N, (51)
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Fig. 2. (Lmin − π2/12)N versus 1/N . The dashed line is the
fit (56).

Adding ∆F1 (15), we get

∆F > −0.0947301/N. (52)

One can also try a Padé summation involving I1, I2

and I3 to compute ∆F 2,+
2 . One gets

N∆F ∼ I1 +
I3/3

1 − I5/5
I3/3

− ζ(3)
2

= −0.076. (53)

To obtain a more accurate estimate of ∆F 2,+
2 , one can

get back to equation (45) and (46), and use the same
kind of discretization scheme that Mézard and Parisi used
to get (37). We restricted the function Ht(u, v) to the
square [−10, +10]2, outside of which it is smaller than
10−4. Starting from t = 0, then incrementing t by 0.01,
we sampled Ht on P equidistant points in each direction u
and v, diagonalized the resulting P ×P matrix, and com-
puted det(I ± Ht). These values were carefully extrapo-
lated to P → +∞. With increasing t both values go to 1:
we stopped at t = 5, where their differences to 1 is smaller
than 10−4. We eventually discretized equation (46) to get

N∆F 2,+
2 = 0.5667± 5.10−4, (54)

and so

N∆F = −0.0343± 5.10−4, (55)

which is compatible with (52).
To check the validity of (55), we carried out numer-

ical simulations similar to the ones in [4], but averaging
over more samples and implementing a variance reduction
trick [18,19]. We used the values N = 35, 50, 60, 75, 100,
125 and 200, with a decreasing number of samples, from
1 200 000 down to 300 000. The results for Lmin are plotted
in Figure 2. A quadratic fit(

Lmin − π2

12

)
N = a +

b

N
+

c

N2
(56)

gives a = −0.0346 ± 0.0066, which is in very good agree-
ment with (55).

3 The bipartite case

Now we turn to the assignment problem. To make the
comparison with the non bipartite case easier, we prefer
using a slightly different convention for the partition func-
tion, which amounts to a rescaling of β: we set

Z =
∑

all possible matchings

exp
(
−N

2
βLmatching

)
(57)

instead of (7). However the reader must bear in mind that
in this case Lmin is TWICE the free energy density F/N =
−1/(βN) lnZ .

Moreover, as we want to compare our results with (4),
we must take into account both possible distributions of
the distances. In Appendix B.1 we sketch the derivation
of the averaged replicated partition function both in the
case of the flat distribution (µ = 0) and in the case of the
exponential distribution (µ = 1):

Zn =
∫ ∏

α

dXαdYα
N

2πgα
exp

(
−N

2
S[Xα, Yα]

)

× exp


−1

2

′∑
α,β

gαgβ

g2
α∪β

(
X2

α∪β + Y 2
α∪β

)

× exp

(
−µ
∑
α

(
X2

α + Y 2
α

))
, (58)

where

S[Xα, Yα] =
∑

α

X2
α + Y 2

α

gα
− 2 ln z[Xα − iYα]

−2 ln z[Xα + iYα]. (59)

The thermodynamical limit of F/N does not depend
on µ, but its correction in 1/N does. One can look for a
saddle-point of the particular form:

Xsp
α = Xsp

p(α) and Y sp
α = 0. (60)

Xsp satisfy the equation

Xα = 2gα
∂ ln z

∂Xα
, (61)

which is exactly the same as the one for the non bipartite
case (10). Hence

Xsp
p = Qsp

p . (62)

The free energy in the thermodynamical limit is the
same as in the non bipartite case (14).

Like in the non bipartite case, the O(1/N) correction
to the free energy contains the terms ∆F 1 coming from
the last line in (58), and ∆F 2 coming from the Gaussian
fluctuations.

One has ∆F 1 = ∆F 1
1 + µ∆F 1

2 , with

∆F 1
1 =

1
2nNβ

′∑
α,γ

gαgγ

g2
α∪γ

(
Qsp

α∪γ

)2 (63)
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and

∆F 1
2 =

1
nNβ

∑
α

(Qsp
α )2 . (64)

We see that ∆F 1
1 is twice the one computed in the case

of the simple matching problem (15). ∆F 1
2 , computed in

Appendix B.2, happens to be the opposite of ∆F 1
1 . So

∆F 1 = (µ − 1)
ζ(3)
N

, (65)

which demonstrates our assertion (5), confirmed by nu-
merical simulations [10].

As far as ∆F 2 is concerned, it is easy to generalize the
computation of the non bipartite case. We have

∆F 2 =
1

2βNn
ln
[
detT +

αγ detT−
αγ

]
, (66)

where T±
αγ are the matrices of equation (17).

Thus we can write ∆F 2 = ∆F 2,+
1 +∆F 2,+

2 +∆F 2,−
1 +

∆F 2,−
2 , where the different contributions are defined in

(28). We have ∆F 2,+
2 + ∆F 2,−

2 = 0 (see Eq. (36)) and we
know that ∆F 2,+

1 = 0 (31).
There is a subtlety however in the computation of

∆F 2,−
1 , as pointed out in [8]: we run into a problem be-

cause T−
αβ has some zero modes. This is actually no sur-

prise: it arises from the fact that the action (59) is left
invariant under the transformation

Xα + iYα → (Xα + iYα) exp

(
i
∑
a∈α

θa

)
, (67)

where θ1, . . . θn are real angles. The zero modes are the n
Goldstone modes of this invariance. As a consequence the
saddle-point (60) is not unique: there is a n dimensional
hypersurface of degenerated saddle-points parameterized
as follows

Xsp
α + iY sp

α = Xsp
p(α) exp

(
i
∑
a∈α

θa

)
0 ≤ θi ≤ 2π. (68)

The kernel of T−
αβ is spanned by the n vectors ξi of com-

ponents

ξα
i =

∂Y sp
α

∂θi
=
{

Xsp
p(α) if i ∈ α

0 if not
. (69)

which have the replica i distinguished. So Nk,−(n) for
k ≥ 2 has no zero mode. Only N0,−(n) and N1,−(n) have
a zero eigenvalue each. Thus ∆F 2,−

1 is to be computed
leaving aside the zero modes, and one has to take into
account a new contribution ∆F 3 to the free energy corre-
sponding to the volume of the orbit (68).

As far a the computation of ∆F 2,−
1 is concerned, we re-

fer to Appendix A.1, where we showed that ∆F 2,+
1 = 0. It

is easy to see that the proof is exactly the same for ∆F 2,−
1 :

there are only some sign reversals (in particular one has
1 + λk instead of 1 − λk in the denominator of (82)), and
the exclusion of the zero modes (corresponding to k = 1
in (87)) has no consequence because the key property (83)
holds for each eigenvalue of I(x, y). So ∆F 2,−

1 = 0, and

∆F 2 = 0. (70)

Let us now turn to the computation of the volume
of the hypersurface defined by (68). It is where Mézard
and Parisi made a mistake: they computed this quantity
without taking into account the fact that they had carried
out the diagonalization in another system of coordinates.
To make things clearer let us rewrite (58) as

Zn =
∫ ∏

dUαdVα
N

2π
exp

(
−N

2
S [

√
gαUα,

√
gαVα]

)

× exp

(
−1

2

′∑
α,γ

gαgγ

gα∪γ

(
U2

α∪γ + V 2
α∪γ

))

× exp

(
−µ
∑
α

gα

(
U2

α + V 2
α

))
. (71)

It is in the variables (Uα, Vα) that Mézard and Parisi
have chosen to diagonalize: indeed the matrix T±

αγ (17)
is half the Hessian matrix of S[

√
gαUα,

√
gαVα]. So the

volume of the hypersurface is to be computed in these
same variables, not in (Xα, Yα) as they did. The saddle-
points coordinates are related by{

Usp
α = Xsp

α /
√

gp

V sp
α = Y sp

α /
√

gp

. (72)

The computation of the correct volume is done in Ap-
pendix B.3. We find

∆F 3 = − 1
2N

· (73)

Collecting the pieces (65, 70, 73), we get the expected
result (4).

4 Conclusion

By fixing the mistakes made by [8] in the computation of
the O(1/N) correction to the mean minimum length in
the random assignment problem, we removed any incon-
sistency among the corpus of results about this problem.
This gives further evidence that the replica approach, in
its simplest symmetric ansatz, exactly solves the problem,
and remains a valuable tool to gain insight on such quan-
tities as this finite size correction which, despite recent
dramatic progresses in the rigorous approach [7], still re-
sist a mathematical treatment.

One may hope to give further support to the conjec-
ture (3) by computing higher order terms in the expansion
of L

exp

min in powers of 1/N when N → +∞. As far as the
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second order term is concerned, it is easy to see that (3)
predicts

L
exp

min =
π2

6
− 1

N
+

1
2N2

+ o

(
1

N2

)
. (74)

In theory this extra term can be recovered by the saddle-
point method: when computing the averaged replicated
partition function (Appendix B.1), one must add one term
to the expansion (116). Then one must work out the re-
sulting Zn with standard techniques [20]. We just had a
glance at it, but it seems to be quite an involved program.

We acknowledge very useful discussions with A. Cavagna, J.
Houdayer and M. Mézard.

Appendix A: The non bipartite case

A.1 Contribution of the derivatives in ∆F2
1 (30)

Our purpose here is to show that

Γ= lim
β→+∞

1
2βN

[
d ln detN0,+(n)

dn
−d ln detN1,+(n)

dn

]
n=0

(75)

equals 0.
We start from the equations (20) and (22). Writing

q
q−n = 1 + n

q + o(n) it is easy to see that N1,+(n) −
N0,+(n) = n∆1 + n∆2 + o(n), where ∆1 and ∆2 are the
following infinite dimensional matrices

∆1
pq =

(−1)q+1

q

(p + q − 1)!
(p − 1)!q!

Qp+q

gp+q

√
gpgq (76)

∆2
pq =

(−1)q

q

Qsp
p Qsp

q

2√gpgq
p, q = 1, . . . + ∞. (77)

It is more convenient to use an integral operator for-
malism. We set

I(x, y) =
2
β

exp
(
−G(x) + G(y)

2

)
K(x + y), (78)

where K is the function defined in (13).
If (cp) is an eigenvector of N0,+

pq (21) for the eigen-
value 1 − λ then f is an eigenfunction of I(x, y) for the
eigenvalue λ, where

f(x) =
+∞∑
q=1

(−1)q

q!
√

gqcqeqx−G(x)/2. (79)

One can easily check that the operators corresponding
to the matrices ∆1 and ∆2 are respectively

∆1(x, y) = − 2
β

e−G(x)/2eG(y)/2

∫ +∞

y

K(t + x)e−G(t)dt,

(80)

∆2(x, y) = −G(x)e−G(y)/2e−G(x)/2. (81)

Thus (75) can be evaluated by the standard result of
first order perturbation theory

Γ = − 1
2N

∑
k

〈k|∆1|k〉 + 〈k|∆2|k〉
β(1 − λk)

, (82)

where the |k〉 are the normalized eigenvectors of I(x, y)
(78), and the λk are the corresponding eigenvalues.

Below we show that
〈k|∆1|k〉 + 〈k|∆2|k〉

β
= 0 (83)

for each k when β → +∞, and that the λk have finite
limits, different from 1, so that Γ = 0.

Let us consider an eigenfunction f of I(x, y):∫
dy I(x, y)f(y) = λf(x). (84)

We make the substitution

f(x)eG(x)/2 = P

(
1

1 + exp(2x/β)

)
· (85)

In the β → +∞ limit we can use (39) and after some
changes of variables we see that (84) can be restated as

∀v ∈ [0, 1],
∫ 1

0

du
P (u)
1−u

K

[
β

2
ln
(

(1−u)(1−v)
uv

)]
=λP (v),

i.e. −
∫ 1

1−v

du
P (u)
1−u

= λP (v), (86)

because K(βz) = −1 if z ≥ 0, 0 otherwise. Note that
P (0) = 0.

The eigenproblem (86) is β independent. We found
that its eigenvalues are λk = (−1)k/k, k = 1, 2, . . . +
∞. The corresponding eigenfunctions are polynomial of
degree k:

Pk(u) =
k∑

p=0

ap,kup with

ap,k = (−1)p k2(k2 − 1) . . . (k2 − (p − 1)2)
(p!)2

· (87)

For the computation of 〈k|∆1|k〉, it is simpler not to
use this explicit form. By derivation of (86), we get

P (1 − v) = λvP ′(v). (88)

Combining (78, 80) and (84), we have∫
∆1(x, y)f(x)dx = −λeG(y)/2

∫ +∞

y

f(t)e−G(t)/2, (89)

so that∫ ∫
∆1(x, y)f(x)f(y)dxdy =

λ
β2

4

∫ 1

0

du
P (u)

u(1 − u)

∫ 1

u

dv
P (v)
1 − v

= −λ2 β2

4

∫ 1

0

du
P (u)

u(1 − u)
P (1 − u) by (88). (90)



G. Parisi and M. Ratiéville: On the finite size corrections to some random matching problems 465

This can be further simplified:∫ 1

0

du
P (u)P (1 − u)

u(1 − u)
=
∫ 1

0

duP (u)P (1 − u)
(

1
u

+
1

1 − u

)

= 2
∫ 1

0

du
P (u)P (1 − u)

u

= 2λ

∫ 1

0

du P (u)P ′(u)

= λP (1)2, (91)

so that∫ ∫
∆1(x, y)f(x)f(y)dxdy = −λ3 β2

4
P (1)2. (92)

The function f is a priori not normalized so that the
above quantity is to be divided by∫

f(x)2dx =
β

2

∫ 1

0

du
P (u)2

1 − u
· (93)

We eventually get

〈k|∆1|k〉 = −λ3 β

2
P (1)2

[∫ 1

0

du
P (u)2

1 − u

]−1

· (94)

Now we compute 〈k|∆2|k〉: thanks to (12),

∆2(x, y) =
2
β

∫
dtK(t + x)e−G(t)e−G(x)/2e−G(y)/2

=
∫

dtI(x, t)e−G(y)/2e−G(t)/2, (95)

hence∫
∆2(x, y)f(x)dx = λ

∫
dtf(t)e−G(y)/2e−G(t)/2, (96)

∫ ∫
∆2(x, y)f(x)f(y)dxdy = λ

[∫
dtf(t)e−G(t)/2

]2

= λ

[
β

2

∫ 1

0

du
P (u)
1 − u

]2

= λ3 β2

4
P (1)2 (97)

and 〈k|∆2|k〉 = +λ3 β
2 P (1)2

[∫ 1

0
duP (u)2

1−u

]−1

, which ends
up the proof.

A.2 The limit of g(k, w) when k → +∞
We start from an integral representation of g(k, w) defined
in (43):

g(k, w) = ekw ln k
+∞∑
p=0

(−1)pepw ln k

p!(p + 2k − 1)!
1

p + k

=
i

2π
ekw lnk

∫
C

dz

∫ +∞

0

dxeS(k,z,x), (98)

C

Fig. 3. The contour C in the complex plane.

where

S(k, z, x) = −z − k(x + 2 ln(−z)) +
kw

z
e−x, (99)

because (p+k)−1 =
∫ +∞
0

dx e−(p+k)x and (p+2k−1)!−1 =
i/(2π)

∫
C dz e−z(−z)−(p+2k). C is a contour in the com-

plex plane such as illustrated in Figure 3.
The stationarity equations read

∂S

∂z
= −1 − 2

k

z
− kw

z2
e−x = 0,

∂S

∂x
= −k − kw

z
e−x = 0, (100)

so that there is a movable saddle-point at{
xsp = (w − 2) lnk
zsp = −k

. (101)

A.2.1 The case w > 2

In this case the saddle-point (101) is inside the range of
integration. We compute the Hessian at this point:

∂2S

∂t2
= 2

k

z2
+ 2

kw

z3
e−x = 0,

∂2S

∂x2
=

kw

z
e−x = −k,

∂2S

∂x∂z
=

kw

z2
e−x = 1. (102)

So, when k → +∞,

∫ +∞

0

dxeS[k,z,x] ∼
∫ +∞

0

dx

× exp
[
Ssp−k

2
[x−(w−2) ln k]2+[x−(w−2) ln k](z+k)

]

∼
√

2π

k
eSsp exp

[
1
2k

(z + k)2
]

. (103)

Then we perform the integration with respect to z with
z + k = −iε:∫

dze
1
2k (z+k)2 = −i

∫ +∞

−∞
dεe−

ε2
2k

= −i
√

2πk. (104)
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Given that Ssp = −kw ln k, we eventually get∫ ∫
dxdzeS(k,z,x) ∼ −2πie−kw ln k. (105)

It follows that

g(k, w) →k→+∞ 1. (106)

A.2.2 The case w < 2

In this case the saddle-point (101) is outside the range
of integration. The integral is dominated by 0 ≤ x 
 1,
where

S(k, z, x)= − z − 2k ln(−z)+
kw

z
−
(

k +
kw

z

)
x + O(x2),

(107)

so that∫ +∞

0

dxeS(k,z,x) ∼ exp
[−z − 2k ln(−z) + kw

z

]
k + kw

z

· (108)

We just have to look for the saddle-point of Σ(k, z) =
−z−2k ln(−z)+kw/z. The stationarity of Σ with respect
to z reads

−1 − 2k

z
− kw

z2
= 0. (109)

There are two candidates as a saddle-point:

z±sp = −k ±
√

k2 − kw. (110)

It is easy to see that, when k → +∞, Σ′′(z+
sp) < 0

whereas Σ′′(z−sp) > 0. So on a contour of the shape of
Figure 3 the right saddle-point is z−sp. We have Σ(k, z−sp) =
−2k ln k + O(k), so that∫

C

dz

∫ +∞

0

dxeS(k,z,x) = O
[
e−2k lnk+O(k)

]
. (111)

Remembering (98), it follows that

g(k, w) = O
[
ek(w−2) ln k+O(k)

]
. (112)

So g(k, w) goes to 0 when k → +∞.

Appendix B: The bipartite case

B.1 Computation of the averaged replicated partition
function

We have two sets of N points each. We introduce the oc-
cupation numbers nij = 0 or 1, which are constrained by

∀i ∈ 1, . . .N,

N∑
j=1

nij =
N∑

j=1

nji = 1. (113)

The length of the matching associated to a choice
of the nij is L({nij}) =

∑
i,j nij lij . The partition func-

tion (57) reads

Z =
∑

nij=0,1

∫ 2π

0

dλ1

2π
· · ·
∫ 2π

0

dλN

2π

∫ 2π

0

dµ1

2π
· · ·
∫ 2π

0

dµN

2π

×
∏

i

exp


iλi


1 −

N∑
j=1

nij






×
∏

i

exp


iµi


1 −

N∑
j=1

nji




 exp


−N

2
β
∑
i,j

nij lij


 ,

(114)

where we enforced (113) using an integral representation
of the Kronecker symbol δ(p) =

∫ 2π

0 dλ/(2π)eipλ. It follows
that

Zn =
∫

d[λ]d[µ] exp

(
i
∑

a

∑
i

λa
i + µa

i

)

×
∏
i,j

(
1 +

∑
α

exp

(
−N

2
p(α)βlij − i

∑
a∈α

(λa
i + µa

j )

))

(115)

where d[λ] is a shorthand notation for∏n
a=1

∏N
i=1 dλa

i /(2π) (see the beginning of Sect. 2
for any precision on the other notations).

As we are interested in the subleading contribution to
the free energy, it is necessary, when averaging over the
disorder, to specify the distribution of the lengths we are
considering:

exp
(
−N

2
pβl

)
=

2
N

gp − 4
µ

N2
g2

p + o

(
1

N2

)
, (116)

where µ = 1 in the case of the exponential distribution, 0
in the case of the flat distribution. Thus

Zn =
∫

d[λ]d[µ] exp

(
i
∑

a

∑
i

λa
i + µa

i

)

×
∏
i,j

(
1 + 2

Tij

N
− 4µ

Rij

N2
+ o

(
1

N2

))
, (117)

where

Tij =
∑

α

gα exp

(
−i
∑
a∈α

λa
i + µa

j

)
,

Rij =
∑

α

g2
α exp

(
−i
∑
a∈α

λa
i + µa

j

)
. (118)
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Now we write

∏
i,j

(
1 + 2

1
N

Tij − 4
µ

N2
Rij

)
= exp


 2

N

∑
i,j

Tij




× exp


− 2

N2

∑
i,j

T 2
ij


 exp


−4

µ

N2

∑
i,j

Rij


 . . . (119)

Plugged into (117), this gives

Zn =
∫

d[λ]d[µ] exp

(
i
∑

a

∑
i

λa
i + µa

i

)

× exp

(
1

2N

∑
α

gα

(
x2

α + y2
α

))

× exp

(
− 1

2N2

′∑
α,γ

gαgγ

(
x2

α∪γ + y2
α∪γ

))

× exp

(
− µ

N2

∑
α

g2
α

(
x2

α + y2
α

))
, (120)

where we set

∑
i

exp

(
−i
∑
a∈α

λa
i

)
= (xα + iyα)/2, (121)

∑
i

exp

(
−i
∑
a∈α

µa
i

)
= (xα − iyα)/2.

In (120),
∑

i,j T 2
ij gives the only contribution

∑′
α,γ be-

cause the other terms vanish when integrated (remember
that for p integer,

∫
dλeipλ = 0 unless p = 0).

Using well known properties of Gaussian integrals, we
can write

Zn =
∫

d[λ]d[µ] exp

(
i
∑

a

∑
i

λa
i + µa

i

)

×
∫ ∏

α

dXαdYα
N

2πgα
exp

(
−N

2

∑
α

X2
α + Y 2

α

gα

)

× exp

(∑
α

Xαxα + Yαyα

)

× exp

(
−1

2

′∑
α,γ

gαgγ

g2
α∪γ

(
X2

α∪γ + Y 2
α∪γ

))

× exp

(
−µ
∑
α

(
X2

α + Y 2
α

))
. (122)

Eventually, expressing xα and yα as functions of the
λa

i and µa
i one gets

Zn =
∫ ∏

α

dXαdYα
N

2πgα
exp

(
−N

2

∑
α

X2
α + Y 2

α

gα

)

×z[Xα − iYα]Nz[Xα + iYα]N

× exp

(
−1

2

′∑
α,γ

gαgγ

g2
α∪γ

(
X2

α∪γ + Y 2
α∪γ

))

× exp

(
−µ
∑
α

(
X2

α + Y 2
α

))
. (123)

B.2 Computation of ∆F1
2 (64)

Let us recall a result of [2]

Qsp
p =

2
βp

∫ +∞

−∞
dl

elp

(p − 1)!
e−G(l). (124)

Using (62) we see that, when n → 0 and β → +∞,

1
nNβ

∑
α

(Qsp
α )2 =

1
Nβ

+∞∑
p=1

(−1)p−1

p
(Qsp

p )2

=
2

Nβ2

∫ +∞

−∞
dl
∑

p

Qsp
p

(−1)p−1

pp!
eple−G(l)

=
2

Nβ2

∫ +∞

−∞
dlG(l)

∫ +∞

l

dte−G(t) by (11)

=
1

2N

∫ +∞

0

du ln(1 + u) ln(1 + 1/u) by (39)

=
1
N

ζ(3). (125)

B.3 Computation of the volume of the hypersurface
of saddle-points (72)

The volume is
∫ 2π

0
dθ1 . . .

∫ 2π

0
dθn

√
det g where

gab =
∑

α

[
∂Usp

α

∂θa

∂Usp
α

∂θb
+

∂V sp
α

∂θa

∂V sp
α

∂θb

]
· (126)

g has a very simple structure: all diagonal elements are
equal to g0, all non diagonal elements to g1, with

g0 =
+∞∑
p=1

(
Usp

p

)2
Cp−1

n−1 ∼n→0

+∞∑
p=1

(−1)p−1

(
Qsp

p

)2
gp

, (127)

g1 =
+∞∑
p=2

(
Usp

p

)2
Cp−2

n−2 ∼n→0 β
+∞∑
p=1

(−1)pp2
(
Qsp

p

)2 + g0.

(128)
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Using (62) and (124), one gets

g0 = β
+∞∑
p=1

(−1)p−1pQsp
p

2
βp

∫ +∞

−∞
dl

elp

(p − 1)!
e−G(l)

= 2
∫ +∞

−∞
dlG′(l)e−G(l) = 2 (129)

and

g1 − g0 = 2
+∞∑
p=1

(−1)ppQsp
p

∫ +∞

−∞
dl

elp

(p − 1)!
e−G(l)

= −2
∫ +∞

−∞
dlG′′(l)e−G(l) = − 2

β
· (130)

The computation of det g gives

det = [g0(n) − g1(n)]n−1 [g0(n) + (n − 1)g1(n)] , (131)

so that

√
det g = 1 +

n

2

[
g1

g0 − g1
+ ln(g0 − g1)

]
+ o(n) (132)

(here again one must be careful when deriving this result
that there might a priori be some contribution of dg0/dn
or dg1/dn).

Thus the contribution to the free energy is

∆F 3 = − 1
2Nβ

[
g1

g0 − g1
+ ln(g0 − g1)

]

= β→+∞ − 1
2N

· (133)

Mézard and Parisi [8] had expressions (127) and (128)
with Xsp

p instead of Usp
p , which made them find a wrong

∆F 3 = −π2/(24N).
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